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Abstract
An analytical approximation method to clarify the symmetry-breaking
stationary solutions to the Gross–Pitaevskii equation with symmetric double-
well external potential is presented. By this method, we can understand
that each symmetry-breaking solution bifurcates from a symmetry-preserving
solution as one varies the coupling constant of the nonlinear interaction, and
predict the bifurcation point. Also, the method gives a good approximation
to the energy eigenvalues of the lower states, symmetry-breaking as well as
symmetry-preserving, as long as the nonlinear interaction is not too strong.

PACS numbers: 03.75.Lm, 03.75.Kk, 05.30.Jp

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The nonlinear self-trapping effect is attracting more attention both experimentally and
theoretically [1–4]. In particular, the stable double-well trap [3] and the nonlinear self-trapping
of Bose–Einstein condensates (BECs) in a double-well trap have been reported in a recent
experiment [4]. All of these strongly motivate the study on the properties of the stationary
solutions and the dynamics of the Gross–Pitaevskii equation (GPE) with double-well external
potential, which turns out to give quite accurate descriptions of this system [5–7].

Recently, sets of stationary solutions have been constructed analytically and numerically,
for the one-dimensional GPEs with a symmetric double-square well and a multi-well external
potential [8–10]. It is interesting to note that GPE with a symmetric double well has solutions
which break the symmetry of the external potential along with the solutions which share the
symmetry. The former is called the symmetry-breaking solution and the latter symmetry
preserving [9, 10]. It has been observed that each symmetry-breaking solution bifurcates from
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a symmetry-preserving one at a critical value (bifurcation point) of the coupling constant of
the nonlinear interaction. Recently, M Trippenbach and his collaborators have reported one
analytical method to predict the critical points (also in the case of weak nonlinear interaction)
with help of the variational analysis [11].

This paper presents an analytical approximation method to understand the symmetry-
breaking solutions and to predict the bifurcation for GPE with a symmetric double-well
external potential in the case of weak (not too strong) nonlinear interaction. Also, the method
gives a good approximation to the energy eigenvalues of the lower states, symmetry-breaking
as well as symmetry-preserving states.

This paper is constructed as follows. In section 2, we will introduce our model and the
approximation method, which consists in approximating the solution to the GPE by a finite
superposition of the eigenfunctions of the linear Schrödinger equation, or the GPE with the
nonlinear interaction removed, and determining the coefficients of the superposition such that
the GPE is satisfied as well as possible. The condition for our approximation to be valid is
given by equation (5) in terms of the energy eigenvalues of the linear Schrödinger equation (4).
To illustrate our method, we shall use a double-square well as a simple example. In section 3,
the formulae for the solutions are given and the bifurcations are shown to take place. The
results from our approximation method will be shown in section 4 to be very well in agreement
with those from the exact numerical solutions of the nonlinear GPE [10]. The conclusion and
discussions are presented in the final section.

2. The model and approximation method

The one-dimensional GPE for the stationary states is given by

{H0 + η�n(x)2}�n(x) = En�n(x) (1)

where, measuring lengths in unit of L and energies in unit of h̄2/(2mL2),

H0 = − ∂2

∂x2
+ Vext(x), (2)

with the nonlinear coupling constant η = (2mL2/h̄2)N0g0, where N0 is the total number of
the atoms trapped in Vext and L is the ‘effective size’ of the external potential. g0 is defined
by 4πh̄2as/m and as, called the reduced 1D s-wave scattering length, which depends on the
properties of strongly radial frequency, along the y–z plane, of the highly elongated external
potential and usual s-wave scattering length of the trapped atom (see [12] for details). The
weak confinement is realized by the 1D (or quasi-1D) potential Vext(x) along the x-direction
which is assumed to be a double well, symmetric under space reflection. We shall illustrate
our method by using a symmetric double-square well,

Vext(x) =



∞ |x| � a

0 b < |x| < a,

V0 |x| � b,

(a = 1/2, V0 > 0) (3)

as a simple example. The normalized eigenfunctions un to the linear Schrödinger equation,

H0un(x) = εnun(x), (4)

form a complete set of orthonormal functions, which we order in the increasing order of
the eigenvalues, ε0 < ε1 < · · · . In the present case of the symmetric double-well potential,
the symmetric and anti-symmetric functions alternate starting from the symmetric u0. When the
central barrier of the double well is high, the energy levels ε2k and ε2k+1 are very closely
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spaced, and the next couple, ε2k+2 and ε2k+3, lie far away compared with their spacings
(k = 0, 1, 2, . . .).

Our approximation method consists in trying a finite superposition of un’s for the solution
�m(x) to the GPE (1), determining the coefficients such that the superposition satisfies the
GPE as well as possible. The symmetry-preserving solutions are superpositions of un’s of
either even or odd n’s, and the symmetry-breaking solutions are superpositions of both even
and odd n’s leading to non-symmetric effective potential η�2

m in equation (1). We shall see
in the next section that the symmetry-breaking solution �m(x) can exist only when η, starting
from η = 0, exceeds a certain critical value ηc

m, while symmetry-preserving solution exists
for all η. In other words, symmetry-breaking solution bifurcates from a symmetry-preserving
one at η = ηc

m.

The condition for our approximation method to be valid for �m is given by

ε2k+1 − ε2k �
{
ε2k+2 − ε2k+1,

ε2k − ε2k−1
(n = 2k, or 2k + 1). (5)

This is a common feature of the double-well potentials whose central barrier is very high.

3. Symmetry-breaking solution and bifurcation

In this section, we shall show that, at certain value of ηc
m of the coupling constant, symmetry-

breaking solution to equation (1) bifurcates from the symmetry-preserving solution under the
assumption of equation (5). For this purpose, let us write ‘even’ states (m = 2k) approximately
as

�2k(x) = N2k(u2k + αu2k+1 + βu2k+2 + γ u2k−2) (|α| < 1) (6)

where α, β and γ (γ = 0 when k = 0) are real parameters to be determined such that �2k

satisfies the GPE as well as possible, and N2k = (1 + α2 + β2 + γ 2)−1/2 is the normalization
factor. For better approximation, we should include more terms in equation (6). A remark is
in order about the reasons for not including the terms, u2k+3 and u2k−1 in equation (6). The
reasons are (i) that both these two states are far away from u2k due to our condition (5), and
(ii) that these states have parity different from that of u2k. If α is small, the asymmetry of
the effective potential �2

2k in equation (1) is small, so that, in view of the condition (5), the
coefficients of these terms are very small, justifying the omissions from equation (6). Actually,
however, α need not be small (see figure 1 below). Yet, the condition (5) would keep the
coefficients of these terms small as can be inferred from the smallness of β and γ (see figure 1).

We shall show (i) that until η, starting from η = 0, reaches a critical point, α = 0 is
the only solution making the even state �2k(x) symmetric under space reflection and (ii)
beyond this point, the solution with α �= 0 arises realizing the symmetry-breaking solution,
and coexisting with the symmetry preserving solution (α = 0). Namely, a bifurcation takes
place at the critical point, η = ηc

2k.

We shall also consider ‘odd’ states,

�2k+1(x) = N2k+1(u2k+1 + αu2k + βu2k+3 + γ u2k−1) (7)

in the similar notations as for the ‘even’ state. We shall see also that there occurs at η = ηc
2k+1 a

bifurcation from symmetry-preserving, antisymmetric state (α = 0) to coexisting symmetry-
breaking (α �= 0) states.

First, let us consider the ‘even’ states. Substituting equation (6) into equation (1), we
have

H0(u2k + αu2k+1 + βu2k+2 + γ u2k−2) + N−1
2k Veff�2k = E2k(u2k + αu2k+1 + βu2k+2 + γ u2k−2)

(8)
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Figure 1. The expansion coefficients of symmetry-breaking states (6 ): (a) m = 0, (b) m = 1,

(c) m = 2, (d) m = 3.

where

N−1
2k Veff�2k = η′(u3

2k + 3αu2
2ku2k+1 + 3α2u2ku

2
2k+1 + α3u3

2k+1

+ 3βu2
2ku2k+2 + 6αβu2ku2k+1u2k+2 + 3α2βu2

2k+1u2k+2

+ 3γ u2
2ku2k−2 + 6αγu2ku2k+1u2k−2 + 3α2γ u2

2k+1u2k−2
)

+ O(β2, γ 2) (9)

with η′ = N 2
2kη. In the following, we shall suppress O(β2, γ 2), restricting our calculations

always to the first order both in β and γ, which we shall verify to be small indeed later. The
α’s are taken to all orders.

Taking the scalar products of equation (8) and each one of u2k, u2k+1, . . . , we get

ε2k + η′[〈u4
2k

〉
+ 3α2

〈
u2

2ku
2
2k+1

〉
+ 3β

〈
u3

2ku2k+2
〉
+ 3α2β

〈
u2ku

2
2k+1u2k+2

〉
+ 3γ

〈
u3

2ku2k−2
〉
+ 3α2γ

〈
u2ku

2
2k+1u2k−2

〉 ] = E2k, (10)

αε2k+1 + αη′[3〈
u2

2ku
2
2k+1

〉
+ α2

〈
u4

2k+1

〉
+ 6β

〈
u2ku

2
2k+1u2k+2

〉
+ 6γ

〈
u2ku

2
2k+1u2k−2

〉] = αE2k, (11)

βε2k+2 + η′[〈u3
2ku2k+2

〉
+ 3α2

〈
u2ku

2
2k+1u2k+2

〉
+ 3β

〈
u2

2ku
2
2k+2

〉
+ 3α2β

〈
u2

2k+1u
2
2k+2

〉
,

+ 3γ
〈
u2

2ku2k−2u2k+2
〉
+ 3α2γ

〈
u2

2k+1u2k−2u2k+2
〉] = βE2k, (12)

and

γ ε2k−2 + η′[〈u3
2ku2k−2

〉
+ 3α2

〈
u2ku

2
2k+1u2k−2

〉
+ 3γ

〈
u2

2ku
2
2k−2

〉
+ 3α2γ

〈
u2

2k+1u
2
2k−2

〉
+ 3β

〈
u2

2ku2k+2u2k−2
〉
+ 3α2β

〈
u2

2k+1u2k+2u2k−2
〉] = γE2k, (13)
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where the angular bracket means integration 〈f 〉 = ∫ a

−a
f (x) dx. Note that equation (11) is

trivial with α = 0, in which case equations (10), (12) and (13) determine the value of β, γ

and E2k for a given value of η and yields a symmetry-preserving solution to equation (8).
To exhibit the bifurcation, we shall show that these equations have a solution with non-

vanishing α, corresponding to η � ηc
2k < 0. For this purpose, we assume α �= 0 to divide out

α from both sides of equation (11).
Eliminating E2k from equations (10) and (11), from equations (11) and (12), and from

equations (11) and (13), we get

A0 + A1β + A2γ = 0

B0 + B1β + B2γ = 0

C0 + C1β + C2γ = 0

(14)

where

Ai = ai0 + (ai1 + ai2 α2)η′ (i = 0, 1, 2) (15)

with

a00 = ε2k+1 − ε2k, a01 = 3
〈
u2

2ku
2
2k+1

〉 − 〈
u4

2k

〉
, a02 = 〈

u4
2k+1

〉 − 3
〈
u2

2ku
2
2k+1

〉
,

a10 = 0, a11 = 6
〈
u2ku

2
2k+1u2k+2

〉 − 3
〈
u3

2ku2k+2
〉
, a12 = −3

〈
u2ku

2
2k+1u2k+2

〉
,

a20 = 0, a21 = 6
〈
u2ku

2
2k+1u2k−2

〉 − 3
〈
u3

2ku2k−2
〉

a22 = −3
〈
u2k−2u2ku

2
2k+1

〉
,

(16)

and similarly for Bi and Ci with

b00 = 0, b01 = 〈
u3

2ku2k+2
〉
, b02 = 3

〈
u2ku

2
2k+1u2k+2

〉
,

b10 = ε2k+2 − ε2k+1, b11 = 3
〈
u2

2ku
2
2k+2

〉 − 3
〈
u2

2ku
2
2k+1

〉
, b12 = 3

〈
u2

2k+1u
2
2k+2

〉 − 〈
u4

2k+1

〉
,

b20 = 0, b21 = 3
〈
u2

2ku2k−2u2k+2
〉
, b22 = 3

〈
u2k−2u

2
2k+1u2k+2

〉
,

(17)

and

c00 = 0, c01 = 〈
u3

2ku2k−2
〉
, c02 = 3

〈
u2ku

2
2k+1u2k−2

〉
,

c10 = 0, c11 = 3
〈
u2

2ku2k+2u2k−2
〉
, c12 = 3

〈
u2

2k+1u2k+2u2k−2
〉
,

c20 = ε2k−2 − ε2k+1, c21 = 3
〈
u2

2ku
2
2k−2

〉 − 3
〈
u2

2ku
2
2k+1

〉
, c22 = 3

〈
u2

2k+1u
2
2k−2

〉 − 〈
u4

2k+1

〉
.

(18)

In order that the linear simultaneous equations (14) for β and γ have solutions, we must have∣∣∣∣∣∣
A0 A1 A2

B0 B1 B2

C0 C1 C2

∣∣∣∣∣∣ = 0, (k �= 0) (19)

which gives an algebraic equation for η′ of the third order for a given value of α. Thus, we
can equivalently regard η′ as a function of α in place of reading α as a function of η′.

To estimate the critical value η′
2k

c
, we have to know the values of the integrals 〈· · ·〉

appearing in equations (16)–(18).
If the central barrier of equation (3) is very high, then the eigenfunctions of equation (4)

can be approximated by

u2k(x) =



fk(x) b � x � a,

0 |x| < b,

fk(−x) −a � x � −b,

(20)
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and

u2k+1(x) =



fk(x) b � x � a

0 |x| < b,

−fk(−x) −a � x � −b,

(21)

with

fk(x) =
√

2

1 − 2b
sin

2(k + 1)π(x − b)

1 − 2b
,

where 2b is the size of the central barrier and a = 1/2, when the central barrier is very high,
the integrals of the eigenfunctions within the barrier can be neglected. Then,〈
u2

2ku
2
2k+1

〉 = 〈
u4

2k

〉 = 〈
u4

2k+1

〉
=

(
2

1 − 2b

)2 ∫ 1/2

b

sin4 2(k + 1)π(x − b)

1 − 2b
dx = 3

2(1 − 2b)
(22)〈

u2
2ku

2
2k+2

〉 = 〈
u2

2ku
2
2k+3

〉 = 〈
u2

2k+1u
2
2k+2

〉 = 〈
u2

2k+1u
2
2k+3

〉
= 2

(
2

1 − 2b

)2 ∫ 1/2

b

sin2 2(k + 1)π(x − b)

1 − 2b
sin2 2(k + 2)π(x − b)

1 − 2b
dx

= 1

1 − 2b
(23)

〈
u2k−2u

2
2ku2k+2

〉 = 〈
u2k−2u

2
2k+1u2k+2

〉 = 〈
u2k−1u

2
2ku2k+3

〉 = 〈
u2k−1u

2
2k+1u2k+3

〉
= 2

(
2

1 − 2b

)2 ∫ 1/2

b

sin
2(k)π(x − b)

1 − 2b
sin2 2(k + 1)π(x − b)

1 − 2b

× sin
2(k + 2)π(x − b)

1 − 2b
dx

= 1

2(1 − 2b)
. (24)

For b = 0.05 of the illustrative example to be treated in section 4,〈
u2

2ku
2
2k+1

〉 = 3

2 × 0.9
= 1.67

〈
u2

2ku
2
2k+2

〉 = 1

0.9
= 1.11

〈
u2k−2u

2
2ku2k+2

〉 = 1

2 × 0.9
= 0.556

a little too large compared with the value,
〈
u2

0u
2
1

〉 = 1.55275,
〈
u2

0u
2
2

〉 = 1.019997,
〈
u0u

2
2u4

〉 =
0.49728 for our illustrative example in section 4 (see table 2). We note that the estimates
similar to the above give〈
u3

2ku2k+2
〉
,

〈
u2ku

2
2k+1u2k±2

〉
,

〈
u3

2ku2k−2
〉
,

〈
u2

2ku2k+1u2k+3
〉
,〈

u3
2k+1u2k+3

〉
,

〈
u2k+1u

3
2k+3

〉
,

〈
u2k+1u

2
2k+2u2k+3

〉 ∼ 0.
(25)

Then,

B1 ∼ b10 = ε2k+2 − ε2k+1, −C2 ∼ −c20 = ε2k+1 − ε2k−2 (26)

are very large compared with 1, which is the order of magnitudes of the integrals 〈· · ·〉
appearing in equation (14). Therefore, equation (19) can be approximated roughly by A0 ∼
a00 + (a01 + a02α

2)η′ = 0, and hence

η′ ∼ − a00

a01 + a02α2
∼ −ε2k+1 − ε2k

3(1 − α2)
, (27)
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which is small and negative by our assumption, equation (5), and a01 ∼ 3, a02 ∼ −3. We
arrive at

η2k � ηc
2k ∼ −.N 2

2k

∣∣
α=0

ε2k+1 − ε2k

3
,

giving the bifurcation point ηc
2k.

From the second and third of equation (14), we obtain

β ∼ −B0C2 − C0B2

B1C2 − C1B2
∼ −B0

B1
∼ − (b01 + b02α

2)η′

b10 + (b11 + b12α2)η′ , (28)

and

γ ∼ −C0

C2
∼ − (c01 + c02)η

′

c20 + (c21 + c22α2)η′ . (29)

Both β and γ are small as expected, so N2k|α=0 ∼ 1 and ηc
2k = −(ε2k+1 − ε2k)/3, a negative

value.
We remark that, when k = 0, we know γ = 0 and find C0 = C1 = 0 from equation (18).

Consequently, equation (13) drops out and the determinant equation (19) reduces to∣∣∣∣A0 A1

B0 B1

∣∣∣∣ = 0 (k = 0), (30)

yet giving the same η′ as equation (27), and the same ηc
2k.

For the ‘odd’ symmetry-breaking solutions, we have similarly

A0 + A1β + A2γ = 0

B0 + B1β + B2γ = 0

C0 + C1β + C2γ = 0

(31)

where

Ai = ai0 + (ai1 + ai2α
2)η′ (i = 0, 1, 2) (32)

and similarly for Bi and Ci with

a00 = ε2k − ε2k+1, a01 = 3
〈
u2

2ku
2
2k+1

〉 − 〈
u4

2k+1

〉
, a02 = 〈

u4
2k

〉 − 3
〈
u2

2ku
2
2k+1

〉
,

a10 = 0, a11 = 6
〈
u2

2ku2k+1u2k+3
〉 − 3

〈
u3

2k+1u2k+3
〉
, a12 = −3

〈
u2

2ku2k+1u2k+3
〉
,

a20 = 0, a21 = 6
〈
u2k−1u

2
2ku2k+1

〉 − 3
〈
u2k−1u

3
2k+1

〉
, a22 = −3

〈
u2k−1u

2
2ku2k+1

〉
,

b00 = 0, b01 = 〈
u3

2k+1u2k+3
〉
, b02 = 3

〈
u2

2ku2k+1u2k+3
〉
,

b10 = ε2k+3 − ε2k, b11 = 3
〈
u2

2k+1u
2
2k+3

〉 − 3
〈
u2

2ku
2
2k+1

〉
, b12 = 3

〈
u2

2ku
2
2k+3

〉 − 〈
u4

2k

〉
,

b20 = 0, b21 = 3
〈
u2k−1u

2
2k+1u2k+3

〉
, b22 = 3

〈
u2k−1u

2
2ku2k+3

〉
,

c00 = 0, c01 = 〈
u2k−1u

3
2k+1

〉
, c02 = 3

〈
u2k−1u

2
2ku2k+1

〉
,

c10 = 0, c11 = 3
〈
u2k−1u

2
2k+1u2k+3

〉
, c12 = 3

〈
u2k−1u

2
2ku2k+3

〉
,

c20 = ε2k−1 − ε2k, c21 = 3
〈
u2

2k−1u
2
2k+1

〉 − 3
〈
u2

2ku
2
2k+1

〉
, c22 = 3

〈
u2

2k−1u
2
2k

〉 − 〈
u4

2k

〉
.

(33)

Using the same method, we can get the critical ηc
2k+1 ∼ (ε2k+1 − ε2k)/3 > 0. In this case, we

have a positive critical value for the symmetry-breaking solutions. Then combining the results
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Table 1. The first six eigenvlues of equation (4).

ε0 = 41.998 ε1 = 42.987 ε2 = 167.20
ε3 = 171.72 ε4 = 372.71 ε5 = 385.45

Table 2. The values of the integrals.〈
u4

0

〉 = 1.5426
〈
u4

1

〉 = 1.5639
〈
u4

2

〉 = 1.5240
〈
u4

3

〉 = 1.5587〈
u2

0u
2
1

〉 = 1.5528
〈
u2

2u
2
3

〉 = 1.5386
〈
u2

0u
2
2

〉 = 1.0200
〈
u2

1u
2
2

〉 = 1.0168〈
u2

1u
2
3

〉 = 1.0402
〈
u2

0u
2
3

〉 = 1.0431
〈
u2

2u
2
4

〉 = 0.997 71
〈
u2

3u
2
4

〉 = 0.989 18〈
u2

3u
2
5

〉 = 1.0347
〈
u2

2u
2
5

〉 = 1.0405
〈
u3

0u2
〉 = −0.007 6541

〈
u3

3u5
〉 = −0.004 8963〈

u3
1u3

〉 = −0.002 2162
〈
u3

2u4
〉 = −0.018 363

〈
u0u

3
2

〉 = − 0.003 8937
〈
u1u

3
3

〉 = −0.001 1890〈
u2

0u1u3
〉= 0.023 223

〈
u0u

2
1u2

〉 = −0.033 716
〈
u2u

2
3u4

〉 = −0.060 834
〈
u2

2u3u5
〉 = 0.032 752〈

u0u2u
2
3

〉 = 0.011 577
〈
u1u

2
2u3

〉 = −0.018 826
〈
u0u

2
2u4

〉 = 0.497 28
〈
u0u

2
3u4

〉 = 0.488 13〈
u1u

2
2u5

〉 = 0.520 49
〈
u1u

2
3u5

〉 = 0.516 86

of ηc
2k+1 and ηc

2k, we have

ηc
2k

ηc
2k+1

}
∼ ∓ε2k+1 − ε2k

3
. (34)

This equation is valid for k = 0 also, though equation (19) reduces in the case of
equation (30).

These conclusions about the bifurcation are not restricted to the example of the double-
square well, equation (3). Most of the above calculations are valid in general except for the
concrete estimates of the integrals 〈· · ·〉. A more careful estimate of the bifurcation points will
be carried out in the next section.

4. Comparison with the exact solutions

To illustrate how good our approximation method is, we consider the double-square well
example, equation (3), with the parameters

a = 0.5, b = 0.05, V0 = 1000. (35)

The high V0 guarantees the approximation condition (5) for k = 0, 1, 2, . . . . The linear
Schrödinger equation (4) can be solved easily. The eigenvalues and the integrals

〈
u4

2k

〉
etc are

given in tables 1 and 2.
Solving equations (14) and (15) and equations (31) and (32) exactly for vanishing α,

we can find the critical values, ηc
m, for the coupling constant of the nonlinear interaction.

We hasten to remark that, when m = 0, we have added one more state, u4, to equation (6)
to improve the approximation. The results agree very well with the exact values from the
numerical solution of the GPE [10] as shown in table 3.

By solving equation (14) for given values of η′ (η′〈ηc
2k

′ or η′〉ηc
2k+1

′), we find the coefficients
α, β and γ in equation (6) for the symmetry-breaking solutions. We remark that, though
equation (31) is a higher order algebraic equation for α, β and γ, the set of real solutions with
|α| < 1 is unique. The results are shown in figure 1 as functions of η. Note that β, γ � α < 1
as expected, justifying our approximation in equation (9) to neglect the second or higher order
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(c) (d)

Figure 2. The expansion coefficients of symmetry-preserving states (6) with α = 0. (a) m = 0,

(b) m = 1, (c) m = 2, (d) m = 3.

Table 3. The critical coupling constants, ηc
m.

n Our approximation Exact (numerical calc.)

0 −0.317 54 −0.317 21
1 0.319 72 0.319 98
2 −1.461 4 −1.459 2
3 1.477 9 1.479 9

terms in β and γ. For α = 0, the equation (11) is removed, and the remaining simultaneous
equations (10), (12) and (13) have solutions β and γ and eigenvalue of E2k. which survive for
all η; these are for the symmetry-preserving states. As we said in section 3, for the ground
state we have to include one more level u4, then in figure 2(a) γ represents the corresponding
coefficient. Similarly, in figure 2(b) for the first excited state, γ corresponds to the coefficient
of u5. Here also, we find 0 < β, γ � 1, as shown in figure 2 justifying our approximation in
equation (9).

The coefficients α, β and γ thus determined give, by equations (10)–(13), the energy
eigenvalues E2k for the states, symmetry-breaking as well as symmetry-preserving. In figure 3,
the results are compared with the exact results from numerical solution of the GPE [10]; the
agreement is very good for |η| � 10, and not very bad even for 10 < |η| < 40 for most of the
states. In figure 3, one sees also the bifurcations very clearly.
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Figure 3. The energy eigenvalues of (1). Those for the symmetry-breaking states (SB) bifurcate
from those for the symmetry-preserving states (SP). (a) m = 0, (b) m = 1, (c) m = 2, (d) m = 3.

5. Conclusion

An approximation method to clarify the symmetry-breaking stationary solutions of GPE
(1) with symmetric double-well external potential was presented. It was shown that each
symmetry-breaking solution �n(x) arises from a symmetry-preserving one if η, the coupling
constant of the nonlinear interaction, starting from 0, exceeds a certain value ηc

n, the bifurcation.
ηc

n was determined in good approximation for each symmetry preserving solution, the result
being ηc

2k < 0 for symmetric states and ηc
2k+1 > 0 for anti-symmetric states. The lower energy

eigenvalues En for the states, symmetry-preserving as well as symmetry-breaking, were also
determined in very good approximation for |η| < 10, and in a not bad approximation for
10 � |η| < 40. This success of our approximation depends on the condition, equation (5),
which is satisfied well by our touchstone model, equation (3) with equation (35).

When the nonlinear interaction is larger, a natural way to keep the approximation good is
to include more eigenstates of the linear Schrödinger equation in the expansions, equations (6)
and (7). Another possible method is to construct the symmetry-preserving states somehow and
use their linear combination to represent the symmetry-breaking states. Since the solutions to
GPE need not be orthogonal to each other, we should orthogonalize them before expansion.

The present work is a model calculation to illustrate our method, and cannot be compared
with experiments directly beyond the qualitative aspects, the bifurcation of the symmetry
breaking states from the symmetry preserving states. In place of checking our results with
experiments, we have compared the results from our approximation with those from exact
numerical calculations [9, 10], finding that their agreement is very good.



The symmetry breaking states and bifurcation of Bose–Einstein condensates in a double well 6033

In view of the experimental condition of today in which quasi-one-dimensional double
well for trapping atoms has been realized and is well controllable [4, 13], we would like
to mention that our results are closely related to one recent experiment on the so-called
macroscopic quantum self-trapping effect [4, 6, 7]. We hope that our approximation method
may be helpful in understanding this effect, clarifying the time evolution of nonlinear systems.
This project is now in progress and the results will be reported in the near future.
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